> startxref It is also useful to know that the time-evolution operator in the interaction picture is related to the full time-evolution operator U(t) as U(t) = e−iH 0t/~U I(t), (22) Oxford University Press: New York, 1995. xref 0000065628 00000 n Hey all, I got some question referring to the interaction picture. Note: Matrix elements in, $V _ { I } = \left\langle k \left| V _ { I } \right| l \right\rangle = e ^ { - i \omega _ { l k } t } V _ { k l }$. 0000017433 00000 n t 0000065137 00000 n 0000145311 00000 n This particular operator then can be called S H 0000138281 00000 n . 0000154338 00000 n 0000132488 00000 n 0000151136 00000 n 0 evolution operator associated with a (interaction picture) Hamiltonian depending period-ically on time. For the last two expressions, the order of these operators certainly matters. Then the eigenstates of A are also eigenstates of H, called energy eigenstates. , 0000141692 00000 n }, An operator in the interaction picture is defined as, A 0000006797 00000 n 0000154278 00000 n J. W. Negele, H. Orland (1988), Quantum Many-particle Systems. {\displaystyle H_{1,{\text{I}}}} 9 0 obj 0000091058 00000 n 0000147279 00000 n even in the case where the interaction picture Hamiltonian is periodic on time. 0000117695 00000 n This is the solution to the Liouville equation in the interaction picture. Now we need an equation of motion that describes the time evolution of the interaction picture wavefunctions. 2191 0 obj <> endobj First of all, from examining the expectation value of an operator we see, \left.\begin{aligned} \langle \hat { A } ( t ) \rangle & = \langle \psi ( t ) | \hat { A } | \psi ( t ) \rangle \\ & = \left\langle \psi \left( t _ { 0 } \right) \left| U ^ { \dagger } \left( t , t _ { 0 } \right) \hat { A } U \left( t , t _ { 0 } \right) \right| \psi \left( t _ { 0 } \right) \right\rangle \\ & = \left\langle \psi \left( t _ { 0 } \right) \left| U _ { I } ^ { \dagger } U _ { 0 } ^ { \dagger } \hat { A } U _ { 0 } U _ { I } \right| \psi \left( t _ { 0 } \right) \right\rangle \\ & = \left\langle \psi _ { L } ( t ) \left| \hat { A } _ { L } \right| \psi _ { L } ( t ) \right\rangle \end{aligned} \right. 1 Let << , however. /Filter /FlateDecode 0000149494 00000 n 0000065909 00000 n i 0000006953 00000 n e Just plug it into Equation 1. , >> For a general operator 0000154099 00000 n We begin by substituting Equation \ref{2.97} into the TDSE: \[ \begin{align} | \psi _ { S } ( t ) \rangle & = U _ { 0 } \left( t , t _ { 0 } \right) | \psi _ { 1 } ( t ) \rangle \\[4pt] & = U _ { 0 } \left( t , t _ { 0 } \right) U _ { I } \left( t , t _ { 0 } \right) | \psi _ { I } \left( t _ { 0 } \right) \rangle \\[4pt] & = U _ { 0 } \left( t , t _ { 0 } \right) U _ { I } \left( t , t _ { 0 } \right) | \psi _ { S } \left( t _ { 0 } \right) \rangle \\[4pt] \therefore \quad U & \left( t , t _ { 0 } \right) = U _ { 0 } \left( t , t _ { 0 } \right) U _ { I } \left( t , t _ { 0 } \right) \end{align}, $\therefore \quad i \hbar \frac { \partial | \psi _ { I } \rangle } { \partial t } = V _ { I } | \psi _ { I } \rangle \label{2.101}$, $V _ { I } ( t ) = U _ { 0 } ^ { \dagger } \left( t , t _ { 0 } \right) V ( t ) U _ { 0 } \left( t , t _ { 0 } \right) \label{2.102}$, $$| \psi _ { I } \rangle$$ satisfies the Schrödinger equation with a new Hamiltonian in Equation \ref{2.102}: the interaction picture Hamiltonian, $$V_I(t)$$. 0000006177 00000 n ± ℏ 0000106349 00000 n 0000008949 00000 n t 0000076906 00000 n 0000142589 00000 n 0000139405 00000 n 0000146225 00000 n i 0000019347 00000 n 0000154517 00000 n S 0000132055 00000 n /Producer (wkhtmltopdf) ℏ endobj 0000078039 00000 n 0000020088 00000 n where $$k$$ and $$l$$ are eigenstates of $$H_0$$. 0000149273 00000 n >> 0000008435 00000 n ψ ψ In particular, let ρI and ρS be the density matrices in the interaction picture and the Schrödinger picture respectively. i 0000154218 00000 n 0000042017 00000 n e 0000109213 00000 n 0000062557 00000 n >> 0000144403 00000 n To switch into the interaction picture, we divide the Schrödinger picture Hamiltonian into two parts: H We can now compute the time derivative of an operator. 0000147794 00000 n So let's attempt to do the part that is easy. H /Resources 11 0 R You don't know the full U, but you know the U that would do the time evolution, for the time-independent Hamiltonian, H0. {{ links." /> > startxref It is also useful to know that the time-evolution operator in the interaction picture is related to the full time-evolution operator U(t) as U(t) = e−iH 0t/~U I(t), (22) Oxford University Press: New York, 1995. xref 0000065628 00000 n Hey all, I got some question referring to the interaction picture. Note: Matrix elements in, $V _ { I } = \left\langle k \left| V _ { I } \right| l \right\rangle = e ^ { - i \omega _ { l k } t } V _ { k l }$. 0000017433 00000 n t 0000065137 00000 n 0000145311 00000 n This particular operator then can be called S H 0000138281 00000 n . 0000154338 00000 n 0000132488 00000 n 0000151136 00000 n 0 evolution operator associated with a (interaction picture) Hamiltonian depending period-ically on time. For the last two expressions, the order of these operators certainly matters. Then the eigenstates of A are also eigenstates of H, called energy eigenstates. , 0000141692 00000 n }, An operator in the interaction picture is defined as, A 0000006797 00000 n 0000154278 00000 n J. W. Negele, H. Orland (1988), Quantum Many-particle Systems. {\displaystyle H_{1,{\text{I}}}} 9 0 obj 0000091058 00000 n 0000147279 00000 n even in the case where the interaction picture Hamiltonian is periodic on time. 0000117695 00000 n This is the solution to the Liouville equation in the interaction picture. Now we need an equation of motion that describes the time evolution of the interaction picture wavefunctions. 2191 0 obj <> endobj First of all, from examining the expectation value of an operator we see, \left.\begin{aligned} \langle \hat { A } ( t ) \rangle & = \langle \psi ( t ) | \hat { A } | \psi ( t ) \rangle \\ & = \left\langle \psi \left( t _ { 0 } \right) \left| U ^ { \dagger } \left( t , t _ { 0 } \right) \hat { A } U \left( t , t _ { 0 } \right) \right| \psi \left( t _ { 0 } \right) \right\rangle \\ & = \left\langle \psi \left( t _ { 0 } \right) \left| U _ { I } ^ { \dagger } U _ { 0 } ^ { \dagger } \hat { A } U _ { 0 } U _ { I } \right| \psi \left( t _ { 0 } \right) \right\rangle \\ & = \left\langle \psi _ { L } ( t ) \left| \hat { A } _ { L } \right| \psi _ { L } ( t ) \right\rangle \end{aligned} \right. 1 Let << , however. /Filter /FlateDecode 0000149494 00000 n 0000065909 00000 n i 0000006953 00000 n e Just plug it into Equation 1. , >> For a general operator 0000154099 00000 n We begin by substituting Equation \ref{2.97} into the TDSE: \[ \begin{align} | \psi _ { S } ( t ) \rangle & = U _ { 0 } \left( t , t _ { 0 } \right) | \psi _ { 1 } ( t ) \rangle \\[4pt] & = U _ { 0 } \left( t , t _ { 0 } \right) U _ { I } \left( t , t _ { 0 } \right) | \psi _ { I } \left( t _ { 0 } \right) \rangle \\[4pt] & = U _ { 0 } \left( t , t _ { 0 } \right) U _ { I } \left( t , t _ { 0 } \right) | \psi _ { S } \left( t _ { 0 } \right) \rangle \\[4pt] \therefore \quad U & \left( t , t _ { 0 } \right) = U _ { 0 } \left( t , t _ { 0 } \right) U _ { I } \left( t , t _ { 0 } \right) \end{align}, $\therefore \quad i \hbar \frac { \partial | \psi _ { I } \rangle } { \partial t } = V _ { I } | \psi _ { I } \rangle \label{2.101}$, $V _ { I } ( t ) = U _ { 0 } ^ { \dagger } \left( t , t _ { 0 } \right) V ( t ) U _ { 0 } \left( t , t _ { 0 } \right) \label{2.102}$, $$| \psi _ { I } \rangle$$ satisfies the Schrödinger equation with a new Hamiltonian in Equation \ref{2.102}: the interaction picture Hamiltonian, $$V_I(t)$$. 0000006177 00000 n ± ℏ 0000106349 00000 n 0000008949 00000 n t 0000076906 00000 n 0000142589 00000 n 0000139405 00000 n 0000146225 00000 n i 0000019347 00000 n 0000154517 00000 n S 0000132055 00000 n /Producer (wkhtmltopdf) ℏ endobj 0000078039 00000 n 0000020088 00000 n where $$k$$ and $$l$$ are eigenstates of $$H_0$$. 0000149273 00000 n >> 0000008435 00000 n ψ ψ In particular, let ρI and ρS be the density matrices in the interaction picture and the Schrödinger picture respectively. i 0000154218 00000 n 0000042017 00000 n e 0000109213 00000 n 0000062557 00000 n >> 0000144403 00000 n To switch into the interaction picture, we divide the Schrödinger picture Hamiltonian into two parts: H We can now compute the time derivative of an operator. 0000147794 00000 n So let's attempt to do the part that is easy. H /Resources 11 0 R You don't know the full U, but you know the U that would do the time evolution, for the time-independent Hamiltonian, H0. {{ links." />
Select Page

The Dyson series allows us to compute the perturbative expansion up to any arbitrary order. S For the perturbation Hamiltonian 0000136424 00000 n trailer 2336 0 obj <>stream Operators and state vectors in the interaction picture are related by a change of basis (unitary transformation) to those same operators and state vectors in the Schrödinger picture. $$\frac{d\hat{a}}{dt}=\frac{1}{i\hbar}\left[ \hat{a},\hbar \omega \left( \hat{a}^{\dagger}\hat{a} + \frac{1}{2} \right) \right]$$ 12 0 obj 0000075288 00000 n <<5C32FF3A8F9D3644A3FCCB436E25FB6E>]/Prev 435652/XRefStm 4750>> 0000136116 00000 n ( << 0000149789 00000 n ψ However, it turns out that our approach generalizes the one proposed by Casas et al. For example: I have the Hamiltonian ##H=sum_k w_k b_k^\\dagger b_k + V(t)=H1+V(t)## When I would now have a time evolution operator: ##T exp(-i * int(H+V))##. {\displaystyle H_{0}} It only depends on t if the operator has "explicit time dependence", for example, due to its dependence on an applied external time-varying electric field. Harmonic oscillator in 2D - applying operators, Effect of the Harmonic Oscilator Raising and Lowering Operators on Time Dependance, Time evolution operator in terms of Hamiltonian, Harmonic Oscillator-Normalisation & Annihilation Operator, Ipho 1987, thermodynamics problem: Moist air ascending over a mountain range, Potential inside a uniformly charged solid sphere, Mass difference due to electrical potential energy, Solving Poisson's equation ##\nabla^2\psi##, Electric field a distance z from the center of a spherical surface. 0000121788 00000 n Quantum Field Theory for the Gifted Amateur, Chapter 18 - for those who saw this being called the Schwinger-Tomonaga equation, this is not the Schwinger-Tomonaga equation. ℏ 0000107451 00000 n If the Hamiltonian has explicit time-dependence (for example, if the quantum system interacts with an applied external electric field that varies in time), it will usually be advantageous to include the explicitly time-dependent terms with H1,S, leaving H0,S time-independent. 0000005241 00000 n From their deﬁnition A. I (t) = U. 5 0 obj 0 {\displaystyle e^{\pm iH_{0,{\text{S}}}t/\hbar }} /ca 1.0 We proceed assuming that this is the case. 0000026883 00000 n 0000154398 00000 n >> startxref It is also useful to know that the time-evolution operator in the interaction picture is related to the full time-evolution operator U(t) as U(t) = e−iH 0t/~U I(t), (22) Oxford University Press: New York, 1995. xref 0000065628 00000 n Hey all, I got some question referring to the interaction picture. Note: Matrix elements in, $V _ { I } = \left\langle k \left| V _ { I } \right| l \right\rangle = e ^ { - i \omega _ { l k } t } V _ { k l }$. 0000017433 00000 n t 0000065137 00000 n 0000145311 00000 n This particular operator then can be called S H 0000138281 00000 n . 0000154338 00000 n 0000132488 00000 n 0000151136 00000 n 0 evolution operator associated with a (interaction picture) Hamiltonian depending period-ically on time. For the last two expressions, the order of these operators certainly matters. Then the eigenstates of A are also eigenstates of H, called energy eigenstates. , 0000141692 00000 n }, An operator in the interaction picture is defined as, A 0000006797 00000 n 0000154278 00000 n J. W. Negele, H. Orland (1988), Quantum Many-particle Systems. {\displaystyle H_{1,{\text{I}}}} 9 0 obj 0000091058 00000 n 0000147279 00000 n even in the case where the interaction picture Hamiltonian is periodic on time. 0000117695 00000 n This is the solution to the Liouville equation in the interaction picture. Now we need an equation of motion that describes the time evolution of the interaction picture wavefunctions. 2191 0 obj <> endobj First of all, from examining the expectation value of an operator we see, \left.\begin{aligned} \langle \hat { A } ( t ) \rangle & = \langle \psi ( t ) | \hat { A } | \psi ( t ) \rangle \\ & = \left\langle \psi \left( t _ { 0 } \right) \left| U ^ { \dagger } \left( t , t _ { 0 } \right) \hat { A } U \left( t , t _ { 0 } \right) \right| \psi \left( t _ { 0 } \right) \right\rangle \\ & = \left\langle \psi \left( t _ { 0 } \right) \left| U _ { I } ^ { \dagger } U _ { 0 } ^ { \dagger } \hat { A } U _ { 0 } U _ { I } \right| \psi \left( t _ { 0 } \right) \right\rangle \\ & = \left\langle \psi _ { L } ( t ) \left| \hat { A } _ { L } \right| \psi _ { L } ( t ) \right\rangle \end{aligned} \right. 1 Let << , however. /Filter /FlateDecode 0000149494 00000 n 0000065909 00000 n i 0000006953 00000 n e Just plug it into Equation 1. , >> For a general operator 0000154099 00000 n We begin by substituting Equation \ref{2.97} into the TDSE: \[ \begin{align} | \psi _ { S } ( t ) \rangle & = U _ { 0 } \left( t , t _ { 0 } \right) | \psi _ { 1 } ( t ) \rangle \\[4pt] & = U _ { 0 } \left( t , t _ { 0 } \right) U _ { I } \left( t , t _ { 0 } \right) | \psi _ { I } \left( t _ { 0 } \right) \rangle \\[4pt] & = U _ { 0 } \left( t , t _ { 0 } \right) U _ { I } \left( t , t _ { 0 } \right) | \psi _ { S } \left( t _ { 0 } \right) \rangle \\[4pt] \therefore \quad U & \left( t , t _ { 0 } \right) = U _ { 0 } \left( t , t _ { 0 } \right) U _ { I } \left( t , t _ { 0 } \right) \end{align}, $\therefore \quad i \hbar \frac { \partial | \psi _ { I } \rangle } { \partial t } = V _ { I } | \psi _ { I } \rangle \label{2.101}$, $V _ { I } ( t ) = U _ { 0 } ^ { \dagger } \left( t , t _ { 0 } \right) V ( t ) U _ { 0 } \left( t , t _ { 0 } \right) \label{2.102}$, $$| \psi _ { I } \rangle$$ satisfies the Schrödinger equation with a new Hamiltonian in Equation \ref{2.102}: the interaction picture Hamiltonian, $$V_I(t)$$. 0000006177 00000 n ± ℏ 0000106349 00000 n 0000008949 00000 n t 0000076906 00000 n 0000142589 00000 n 0000139405 00000 n 0000146225 00000 n i 0000019347 00000 n 0000154517 00000 n S 0000132055 00000 n /Producer (wkhtmltopdf) ℏ endobj 0000078039 00000 n 0000020088 00000 n where $$k$$ and $$l$$ are eigenstates of $$H_0$$. 0000149273 00000 n >> 0000008435 00000 n ψ ψ In particular, let ρI and ρS be the density matrices in the interaction picture and the Schrödinger picture respectively. i 0000154218 00000 n 0000042017 00000 n e 0000109213 00000 n 0000062557 00000 n >> 0000144403 00000 n To switch into the interaction picture, we divide the Schrödinger picture Hamiltonian into two parts: H We can now compute the time derivative of an operator. 0000147794 00000 n So let's attempt to do the part that is easy. H /Resources 11 0 R You don't know the full U, but you know the U that would do the time evolution, for the time-independent Hamiltonian, H0.